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Mathematics and Physics Department 
“N. K. Krupskaja” Pedogogical University 
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ABSTRACT 

Based on the stability theory of continuous thermodynamics for polymer 
solutions, necessary and sufficient conditions for multiple critical points are 
derived assuming the segment-molar excess Gibbs free energy to be in- 
dependent of the distribution function. Equations for calculating double and 
triple critical points are given. Higher order critical points may be obtained 
in a successive way. For polymers possessing a Schulz-Flory molecular 
weight distribution, general conditions for an rn-fold critical point are pre- 
sented. 

INTRODUCTION 

In synthetic polymers a large number of species differing by molecular weight 
occur. Due to this polydispersity, the thermodynamic treatment of the liquid- 
liquid equilibrium in polymer solutions becomes more complicated than in sys- 
tems with a small number of components. The most useful way to overcome these 
difficulties is the method of continuous thermodynamics [3-6]. Continuous ther- 
modynamics is based directly on the continuous molecular weight distribution 
instead of the amounts of individual polymer species. 

Correspondingly, the thermodynamic stability theory was also converted into a 
continuous form not containing determinants whose elements refer to the in- 
dividual polymer species [7]. On the basis of this continuous form of the stability 
theory, conditions for the occurrence of multiple critical points are presented in 
this paper. 

549 
Copyright 0 1990 by Marcel Dekker, Inc. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
4
4
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



550 BROWARZIK ET AL. 

The fundamental papers are multiple critical points date back to Korteweg [8], 
van der Waals [9, lo], and Schreinemakers [ l l ] .  More recent treatments were 
given by Griffiths [12] and solc [13-151. 

MULTIPLE CRITICAL POINTS IN MULTICOMPONENT SYSTEMS 

In a system consisting of N + 1 components 0, 1, 2, ..., N ,  the conditions for an 
m-fold critical point read 

D j = O ;  j = O ,  1, ..., m 

Dm+l * 0 

The determinant D, is given by 

and the other determinants result successively from 

; n = l , 2 ,  . . .  

(3) 

Here G is the molar Gibbs free energy, andX,,X,, ..., X, are the independent mole 
fractions of the system. For large values of N,  the application of Eqs. (1) will be 
very expensive and, by using a computer, it may lead to senseless results due to 
rounding-off errors. Therefore, another method to obtain the conditions for an 
m-fold critical point will now be shown. This other method allows us to calculate 
D,, D,, ..., Dmcl rapidly if D, is given by an analytic expression and, furthermore, 
it may easily be generalized to the continuous version of thermodynamics of 
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APPLICATION OF CONTINUOUS THERMODYNAMICS. 111 551 

multicomponent systems. For simplicity, this other method will first be demon- 
strated for the case of a ternary system. 

In ternary systems, G depends on two independent mole fractions, XI and X,. 
The spinodal obeys the condition 

Min 6,C = 0 (4) 

where the second-order differential tj2G according to a2G/aX2aXl = a2G/aXlaX2 is 
given by 

Here 6Xl and SX, are aritrary increases of Xland X,, respectively. According to Eq. 
(4), the first task is to determine that variation SX,,SX, minimizes 6,G. Since Min 
b2G has to equal zero, a common factor in MI and SX, remains undetermined. 
Choosing this factor to equal MI,  that value (W,) of SX, is to be calculated by 
minimizing h2G at constant 6x, # 0. For this purpose, on the basis of Eq. (5), the 
partial derivative of 62G with respect to SX, is formed and equated to zero, 
resulting in 

assuming a2G/aX2 * 0. Applying this variation 6X1,&X2*, Eq. (5) leads to 

Min s2G = (Do /ax:)(6Xx')z a2G 

where Do is defined by 

Do = 

(7) 
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552 BROWARZIK ET AL. 

According to Eq. (4), the spinodal equation reads 

Do = 0 

The first-order differential of Do is given by 

Abbreviating 6Do(6X,,6X2*) by 6Do*, the application of Eq. (6) results in 

6Do* = (D1 /-=)6X, ax: 

where D, is defined by 

dD0 
ax, ax2 

d o ,  - 

D, = 

(9) 

Since the critical point may be considered as a double solution of the spinodal 
equation, the necessary conditions for a single critical point read 

Equations (13) are equivalent to Eq. (4) and 

(6X2*)3  = 0 6Xl(6X,*)2 + - a3G 
ax, ax22 a X23 

a3G 
+ 3  

where b2G* = 62G(6X,,6X2*). Abbreviating analogously 6D,(6X,,6X2*) by 6D,*, 
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APPLICATION OF CONTINUOUS THERMODYNAMICS. 111 

the application of Eq. (6) leads to 

6Dl* = (Dz /%)6X,  

where D, is given by 

D, = 
a2G d2G - -  ax,ax, a x , ~  

553 

(15) 

The double critical point as a double solution of D ,  = 0 has to satisfy the 
necessary conditions 

Do =O; D, = O ;  Dz = O  (17) 

Generalizing this treatment, the necessary and sufficient conditions for an 
m-fold critical point read 

D j = O ,  j = O , 1 , 2  , . . . ,  m ( W  

where Do is given by Eq. (8) and D, (n = 1, 2, ...) by 

resulting in 

D, = 
a Z G  a2G - -  ax,ax, ax ,~  

; n = l , 2 ,  . . .  
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Without additional difficulties, this treatment may be extended to an N + 1 
component mixture [ 161. Regarding the generalization to continuous thermo- 
dynamics, the most important result is Eq. (19a) which permits us to avoid the 
calculation of determinants, as will be shown in the next section. 

MULTIPLE CRITICAL POINTS IN POLYDISPERSE POLYMER 
SOLUTIONS 

Synthetic polymers always show a polydispersity, i.e., they consist of a large 
number of individual species differing in their molecular weight. To obtain multi- 
ple critical points, the generalization of the discontinuous procedure outlined 
above to multicomponent systems may be applied [16]. Another way is provided 
by a series expansion of the phase equilibrium conditions at the critical point [15]. 
The following treatment is based on the stability theory of continuous thermo- 
dynamics [l, 2, 71. 

A polymer solution consisting of a Solvent A and a Homopolymer B is con- 
sidered. Choosing a standard segment, the solvent and the different polymer 
species may be characterized by the segment numbers rA and r, respectively. The 
overall concentration of all polymer species is given by the segment fraction I#, 
Le., the segment fraction of the solvent reads 1 - I#. To describe the composition 
of the polymer, the segment-molar distribution function W(r) is introduced which 
equals the well-known mass distribution function, i.e., 

is the relative segment fraction of all polymer species with segment numbers 
between r’ and r“. Here the term “relative” means “with respect to all polymer 
species.” Therefore, the normalization condition 

has to be fulfilled. The quantities r,, and r0 signify the limits of the range of 
occurring segment numbers: r, s r s P. 

For polymer solutions the nonlinear part A C  of Gibbs free energy per mole of 
segments may be written in the following form [l]: 
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APPLICATION OF CONTINUOUS THERMODYNAMICS. 111 555 

Here R is the universal gas constant and T is the temperature. The quantity 3 is 
called the segment-molar excess Gibbs free energy; it generalizes the classic 
X-term, i.e., EE describes the deviations from a Flory-Huggins mixture [17, 181 
with x = 0. 

The second-order differential of AEIRT reads [l]: 

Here % is assumed to be independent of the distribution function W(r), i.e., 
%depends only on T, P, and $. Excluding the case cf oligomer solutions, this 
assumption is very often made. In calculating Min 62c the condition 

resulting from Eq. (20) has to be taken into account additionally [l]. By doing so, 
the application of Lagrange's method of undetermined multipliers results in the 
following variation: 

to lead to the minimum of h2E [l]. Here 

i.e., rC1) is the weight-average segment number. Equations (22) and (24) may be 
considered to be generalizations of Eqs. (5) and (6), respectively. The application 
of 6[@W(r)]* to Q. (22) results in 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
4
4
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



556 BROWARZIK ET AL. 

where Lo is given by 

1 a2GEIRT +- + 1 
Lo = 

r , ( l  - I)) WI) av2 
Equations (26) and (27) correspond to Eqs. (7) and (8), respectively, but here 

the quantity Lo is not a determinant. In analogy to Eq. (9), the spinodal equation 
reads 

Lo = 0 (28) 

The first-order differential of Lo is given by 

The different form of the last term results since P) depends on the distribution 
function W(r) due to Eq. (25). According to Eqs. (24), (25), and (29), &Lo* = 
6Lo(6[~W(r)]*)  reads 

with 

By considering the critical point as a double solution of the spinodal equation, 
the necessary conditions for a single critical point read 

Lo = o ;  L ,  = 0 

This corresponds to 63&i[~W(r)]*) = 0. 
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APPLICATION OF CONTINUOUS THERMODYNAMICS. Ill 557 

To find conditions for a double critical point, the differential 

has to be considered. Applying Eq. (24), 6Ll* = 6Ll(6[QW(r)]*) reads 

6Ll* = L,W (34) 

with 

Then the necessary conditions for a double critical point are 

Lo = 0; L ,  = 0; L2 = 0 (36) 

Continuing this procedure, the necessary conditions for a triple critical point 
read 

Lo = 0; L,  = 0; L, = 0; L, = 0 (37) 

with 

These equations agree with the results of solc [15] based on a series expansion 
of the phase equilibrium conditions. By generalizing this treatment, the necessary 
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558 BROWARZIK ET AL. 

and sufficient conditions for an m-fold critical point read 

L j = O f o r j = 0 , 1 , 2  ,..., m 

Lm+1 v! 0 

The calculation of Lj may be performed successively based on the equation for 
Lj$n each case. According to the presented treatment, Lj is calculated by 

where 6Lj*_, is obtained by applying 6[vW(r)]* according to Eq. (24) to 6Lj-,. 
The quantity Lj may also be expressed by 

where f;. has to be calculated successively from 

f0(W) = 1/31) 

GENERAL FORMULA FOR A SCHUU-FLORY DISTRIBUTION 

As shown in the preceding section, the calculation of the expressions L, is to be 
performed successively. But for a (generalized) Schulz-Flory distribution, a direct 
formula may be easily obtained. The (generalized) Schulz-Flory distribution reads 
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APPLICATION OF CONTINUOUS THERMODYNAMICS. 111 559 

k k + l  
W ( r )  = (')kexp ( - k r / F )  

x ( k +  1)  F (43) 

Here F is the number-average segment number of all polymer species, k is the 
reciprocal of the non-uniformity (which is a measure for the breadth of the 
distribution), and r is the Gamma-function. In terms of the moments defined by 
Eq. (25) (r, = 0, P = a), r and k read 

Furthermore, Eqs. (25) and (43) yield 

P ) =  (i) ( k + i ) ;  n = 1 , 2 , 3 ,  . . (45) 

To calculate the quantities of type Lj, the differentials SF and 6k are needed. 
According to Fqs. (20), (23), (25), and (44a), 6F is given by 

With the aid of Eqs. (23), (24), (44a), and (45), 6r' becomes 
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560 BROWARZIK ET AL. 

According to Eqs. (20), (23), (25), and (44b), 6k is given by 

Applying Eqs. (23)-(25), (44a), and (45), 6k* reads 

6k* = 0 (49) 

Equations (47) and (49) result in a simplification of the calculation of Lj according 
to Eq. (40), leading to 

With the aid of Eqs. (27), (44a), and (44b), Lo leads 

1 1 k aZ%/RT 
Lo = +-y---+- 

rA(l -9) r v  k +  1 w2 

Using Eqs. (50) and (51), L ,  is given by 

1 a3@/RT 
(1 + - ) +  7 1 k - -  - 1 

L, = 
rA(l - I+)' Fq2 k + 1 k + l  

Furthermore, L,  reads 

(53) ( 1  + -)(2 + -) + ~ 

1 k 1 1 a4&lRT + -  - 2 
L, = 

rA(l - q)3 i.q3 k + 1 k +  1 k +  1 w4 
Generalizing this procedure, Lj is given by 
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i-I j! 1 k 
Li = + (-l)j ___ 

rA(l - v1 Wj+l (k + 1)i.l 
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